Javascript required
Skip to content Skip to sidebar Skip to footer

Shigkeys 11th Ed Ch 3 Solutions

Chapter 6

6-1 Eq. (2-21): SHut 3.4 B 3.4(300) 1020 MPa

Eq. (6-8): SSeu 0.5 t0.5(1020) 510 MPa

Table 6-2: ab1.58, 0.

Eq. (6-19):

0. 1.58(1020) 0.

b kaauSt

  

Eq. (6-20):

0.107 0. kdb 1.24 1.24(10) 0.

  

Eq. (6-18): SkkSeabe (0.877)(0.969)(510)433 MPa Ans.


6-2 (a) Table A-20: Sut = 80 kpsi

Eq. (6-8): SAe0.5(80) 40 kpsi ns.

ns

ns

(b) Table A-20: Sut = 90 kpsi

Eq. (6-8): SAe0.5(90) 45 kpsi.

(c) Aluminum has no endurance limit. Ans.

(d) Eq. (6-8): Sut > 200 kpsi, SAe100 kpsi.

__

6-3 Sut120 kpsi, rev 70 kpsi

Fig. 6-18: f 0.

Eq. (6-8): SSee0.5(120) 60 kpsi 

Eq. (6-14):

 

2 2 ()0.82(120) 161.4 kpsi 60

ut

e

fS a S

 

Eq. (6-15):

1 1 0.82(120)

log log 0. 3360

ut

e

fS b S

 

  

 

Eq. (6-16):

1/ 1 0. rev 70 116 700 cycles.

161.

b

NA a

 

 



ns

__

6-4 Sut1600 MPa, 900 rev MPa

Fig. 6-18: Sut = 1600 MPa = 232 kpsi. Off the graph, so estimate f = 0.77.

Eq. (6-8): Sut > 1400 MPa, so Se = 700 MPa

Eq. (6-14):

 

2 2 ()0.77(1600) 2168.3 MPa 700

ut

e

fS a S

 

Eq. (6-15):

1 1 0.77(1600)

log log 0. 3 3 700

ut

e

fS b S

 

  

 

Eq. (6-16):

1/ 1 0. rev 900 46 400 cycles. 2168.

b

NA a

 





ns

__

6-5 SNut230 kpsi, 150 000 cycles

Fig. 6-18, point is off the graph, so estimate: f = 0.

Eq. (6-8): Sut > 200 kpsi, so SSee 100 kpsi

Eq. (6-14):

 

2 2 ()0.77(230) 313.6 kpsi 100

ut

e

fS a S

 

Eq. (6-15):

1 1 0.77(230)

log log 0. 3 3 100

ut

e

fS b S

 

  

 

Eq. (6-13):

0. 313.6(150 000) 117.0 kpsi.

b Saf N Ans

  

__

6-6 Sut1100 MPa= 160 kpsi

Fig. 6-18: f = 0.

Eq. (6-8): SSee0.5(1100) 550 MPa 

Eq. (6-14):

 

2 2 ()0.79(1100) 1373 MPa 550

ut

e

fS a S

 

Eq. (6-15):

1 1 0.79(1100)

log log 0. 3 3 550

ut

e

fS b S

 

  

 

Eq. (6-13):

0. 1373(150 000) 624 MPa.

b Saf N Ans

  

__

6-

SS Nut150 kpsi, yt 135 kpsi, 500 cycles

Fig. 6-18: f = 0.

From Fig. 6-10, we note that below 10

3 cycles on the S-N diagram constitutes the low-

cycle region, in which Eq. (6-17) is applicable.

Check:

3

6

3 0. 10 6 0. 10

( ) 162(10 ) 90 kpsi

( ) 162(10 ) 50 kpsi

fax

fax

S

S









The end points agree.


6-10 d = 1.5 in, Sut = 110 kpsi

Eq. (6-8): Se0.5(110) 55 kpsi

Table 6-2: a = 2.70, b =  0.

Eq. (6-19):

0. 2.70(110) 0.

b kaauSt

  

Since the loading situation is not specified, we'll assume rotating bending or torsion so

Eq. (6-20) is applicable. This would be the worst case.

0.107 0. 0.879 0.879(1.5) 0.

Eq. (6-18): 0.777(0.842)(55) 36.0 kpsi.

b

eabe

kd

SkkS Ans

  

 

__

6-11 For AISI 4340 as-forged steel,

Eq. (6-8): Se = 100 kpsi

Table 6-2: a = 39.9, b =  0.

Eq. (6-19): ka = 39.9(260)

0. = 0.

Eq. (6-20):

0. 0. 0. 0.

kb

   

Each of the other modifying factors is unity.

Se = 0.158(0.907)(100) = 14.3 kpsi

For AISI 1040:

0.

0.5(113) 56.5 kpsi

39.9(113) 0.

0.907 (same as 4340)

e

a

b

S

k

k





Each of the other modifying factors is unity

Se0.362(0.907)(56.5) 18.6 kpsi

Not only is AISI 1040 steel a contender, it has a superior endurance strength.


6-12 D = 1 in, d = 0.8 in, T = 1800 lbfin, f = 0.9, and from Table A-20 for AISI 1020 CD,

Sut = 68 kpsi, and Sy = 57 kpsi.

(a)

0.1 1

Fig. A-15-15: 0.125, 1.25, 1. 0.8 0.

ts

rD K dd

  

Get the notch sensitivity either from Fig. 6-21, or from the curve-fit Eqs. (6-34) and

(6-35b). We'll use the equations.

     

35 8 23 a 0.190 2.51 10 68 1.35 10 68 2.67 10 68 0.

     

11

0.

0.

1 1

0.

qs a

r

 

 

Eq. (6-32): Kfs = 1 + qs (Kts  1) = 1 + 0.812(1.40  1) = 1.

For a purely reversing torque of T = 1800 lbfin,

33

16 1.32(16)(1800)

23 635 psi 23.6 kpsi (0.8)

fs afs

Tr KT K Jd



   

Eq. (6-8): Se0.5(68) 34 kpsi

Eq. (6-19): ka = 2.70(68)

0. = 0.

Eq. (6-20): kb = 0.879(0.8)

0. = 0.

Eq. (6-26): kc = 0.

Eq. (6-18) (labeling for shear): Sse = 0.883(0.900)(0.59)(34) = 15.9 kpsi

For purely reversing torsion, use Eq. (6-54) for the ultimate strength in shear.

Eq. (6-54): Ssu = 0.67 Sut = 0.67(68) = 45.6 kpsi

Adjusting the fatigue strength equations for shear,

Eq. (6-14):

 

22 0.9(45.6) 105.9 kpsi 15.

su

se

fS a S

 

Eq. (6-15):

1 1 0.9(45.6)

log log 0.137 27 3 3 15.

su

se

fS b S

 

  

 

Eq. (6-16): 

1 1 23.3 0.137 27 3 61.7 10 cycles. 105.

a b NA a

 





ns

 

6 Sf 403 10 3 1. a 7200 /

n  b

 

b = 0.0299 m Select b = 30 mm.

Since the size factor was guessed, go back and check it now.

Eq. (6-25):   

1/ 2 dhe0.808 b b0.808 0.808 30 24.24 mm

Eq. (6-20):

0. 24. 0. 7.

kb

   

Our guess of 0.85 was slightly conservative, so we will accept the result of

b = 30 mm. Ans.

Checking yield,



6 max 3

7200

10 267 MPa 0.

 

max

420

1.

267

y y

S

n 



__

-14 Given: w =2.5 in, t = 3/8 in, d = 0.5 in, nd = 2. From Table A-20, for AISI 1020 CD,

Eq. (6-8):

b = 1 (axial loading)

Eq. (6-18): Se = 0.88(1)(0.85)(34) = 25.4 kpsi

notch sensitivity either from Fig. 6-20, or from the curve-fit Eqs. (6-34) and

h

6

Sut = 68 kpsi and Sy = 57 kpsi.

Se0.5(68) 34 kpsi

Table 6-2: k 88

0. 2.70(68) 0.

  a

Eq. (6-21): k

Eq. (6-26): kc = 0.

Table A-15-1: /dKw0.5 / 2.5 0.2, t 2.

Get the

(6-35a). The relatively large radius is off the graph of Fig. 6-20, so we'll assume the

curves continue according to the same trend and use the equations to estimate the notc

sensitivity.

     

352 83 a 0.246 3.08 10 68 1.51 10 68 2.67 10 68 0.

     

11

0.

0.

1 1

0.

q a

r

 

 

Eq. (6-32): Kqft   1 (K1) 1 0.836(2.5 1) 2.

2.

=

(3 / 8)(2.5 0.5)

aa af

FF

KF

A

 

a

e life was not mentioned, we'll assume infinite life is desired, so the Since a finit

completely reversed stress must stay below the endurance limit.

25.

2

3

e f aa

S

n  F

 

FAa4.23 kips ns.


ble A-20, for AISI 1095 HR, Sut = 120 kpsi and Sy = 66 kpsi.

6 -15 Given: max min

Dd r M    2 in, 1.8 in, 0.1 in, 25 000 lbf in, M0.

From Ta

Eq. (6-8): SSeu 0.5 t0.5 120  60 kpsi

Eq. (6-19):

0. 2.70(120) 0.

b kaauSt

  

Eq. (6-24): dde 0.370 0.370(1.8) 0.666 n i

Eq. (6-20):

0.107 0.10 7 kdbe0.879 0.879(0.666) 0.

  

Fig. A-15-14:

Eq. (6-26): 1kc

Eq. (6-18): SkkkSeabce (0.76)(0.92)(1)(60)42.0 kpsi

Dd/ 2 / 1.8 1.11, /rd 0.1 / 1.8 0.056 Kt2.

Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Eqs. (6-34) and

(6-35a). We'll use the equations.

     

352 83 a 0.246 3.08 10 120 1.51 10 120 2.67 10 120 0.

     

11

0.

0.

1 1

0.

q a

r

 

 

Eq. (6-32): Kqft   1 (K1) 1 0.87(2.1 1) 1.96 

4 44 Id ( / 64)( / 64)(1.8) 0.5153 in

max

min

25 000(1.8 / 2)

43 664 psi 43.7 kpsi 0.

0

Mc

I

  

Eq. (6-8):

' SSeu 0.5 t0.5(470) 235 MPa

Eq. (6-19):

0. 4.51(470) 0.

b kaauSt

  

Eq. (6-24):

0.107 0. kdb 1.24 1.24(35) 0.

  

Eq. (6-26): kc 1

Eq. (6-18):

' SkkkSeabce(0.88)(0.85)(1)(235) 176 MPa

rev 

176

1.14 Infinite life is predicted.. 1.55 99.

e f f

S

nA K

  ns

__

6-17 From a free-body diagram analysis, the

bearing reaction forces are found to be RA =

2000 lbf and RB = 1500 lbf. The shear-force

and bending-moment diagrams are shown. The critical location will be at the shoulder

fillet between the 1-5/8 in and the 1-7/8 in

diameters, where the bending moment is

large, the diameter is smaller, and the stress

concentration exists.

M = 16 000 – 500 (2.5) = 14 750 lbf · in

With a rotating shaft, the bending stress will

be completely reversed.

rev 4

14 750(1.625 / 2)

35.0 kpsi ( / 64)(1.625)

Mc

I

 

This stress is far below the yield strength of 71 kpsi, so yielding is not predicted.

Fig. A-15-9: r/d = 0.0625/1.625 = 0.04, D/d = 1.875/1.625 = 1.15, Kt =1.

Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Eqs. (6-34) and

(6-35a). We will use the equations.

    

35238 a 0.246 3.08 10 85 1.51 10 85 2.67 10 85 0.

     

11

0.

0.

1 1

0.

q a

r

 

 

.

Eq. (6-32): Kqft   1 (K1) 1 0.76(1.95 1) 1.72 

Eq. (6-8): SS

' eu 0.5 t0.5(85) 42.5 kpsi

Eq. (6-19):

0. 2.70(85) 0.

b kaauSt

  

Eq. (6-20):

0.107 0. kdb 0.879 0.879(1.625) 0.

  

Eq. (6-26): kc 1

Eq. (6-18):

' SkkkSeabce(0.832)(0.835)(1)(42.5)29.5 kpsi

rev 

29.

0..

1.72 35.

e f f

S

nA K

  ns

Infinite life is not predicted. Use the S-N diagram to estimate the life.

Fig. 6-18: f = 0.

 

22 0.867(85) Eq. (6-14): 184. 29.

1 1 0.867(85)

Eq. (6-15): log log 0. 3 3 29.

ut

e

ut

e

fS a S

fS b S

 

 

  

 

11

rev (1.72)(35.0) 0. Eq. (6-16): 4611 cycles 184.

b Kf N a

 





N = 4600 cycles Ans.


6-18 From a free-body diagram analysis, the

bearing reaction forces are found to be RA =

1600 lbf and RB = 2000 lbf. The shear-force

and bending-moment diagrams are shown.

The critical location will be at the shoulder fillet between the 1-5/8 in and the 1-7/8 in

diameters, where the bending moment is

large, the diameter is smaller, and the stress

concentration exists.

M = 12 800 + 400 (2.5) = 13 800 lbf · in

With a rotating shaft, the bending stress will

be completely reversed.

rev 4

13 800(1.625 / 2

)

32.8 kpsi ( / 64)(1.625)

Mc

I



This stress is far below the yield strength of 71 kpsi, so yielding is not predicted.

Fig. A-15-9: r/d = 0.0625/1.625 = 0.04, D/d = 1.875/1.625 = 1.15, Kt =1.

First, we'll evaluate the stress. From a free-body diagram analysis, the reaction forces at

the bearings are R 1 = 2 kips and R 2 = 6 kips. The critical stress location is in the middle

of the span at the shoulder, where the bending moment is high, the shaft diameter is smaller, and a stress concentration factor exists. If the critical location is not obvious,

prepare a complete bending moment diagram and evaluate at any potentially critical

locations. Evaluating at the critical shoulder,

M2 kip 10 in20 kip in

  

rev 4333

/ 2 32 32 20 203.

kpsi /

Mc Md M

Id d d d



   

Now we'll get the notch sensitivity and stress concentration factor. The notch sensitivity

depends on the fillet radius, which depends on the unknown diameter. For now, we'll

estimate a value for q = 0.85 from observation of Fig. 6-20, and check it later.

Fig. A-15-9: Dd/   1.4 /d d1.4, /rd0.1 /d d0.1, Kt 1.

Eq. (6-32): Kqft   1 (K1) 1 0.85(1.65 1) 1.55 

Now we will evaluate the fatigue strength.

'

0.

0.5(120) 60 kpsi

2.70(120) 0.

e

a

S

k





Since the diameter is not yet known, assume a typical value of k b = 0.85 and check later. All other modifiers are equal to one.

Se = (0.76)(0.85)(60) = 38.8 kpsi

Determine the desired fatigue strength from the S-N diagram.

Fig. 6-18: f = 0.

 

22 0.82(120) Eq. (6-14): 249. 38.

1 1 0.82(120)

Eq. (6-15): log log 0. 3 3 38.

ut

e

ut

e

fS a S

fS b S

 

 

  

 

0. Eq. (6-13): 249.6(570 000) 41.9 kpsi

b Saf N

  

Compare strength to stress and solve for the necessary d.



3 rev

d = 2.29 in

41.

1.

1.55 203.7 /

f f f

S

n K d

 

Since the size factor and notch sensitivity were guessed, go back and check them now.

Eq. (6-20): 

0.157 0. kdb 0.91 0.91 2.29 0.

   

Our guess of 0.85 was conservative. From Fig. 6-20 with r = d/10 = 0.229 in, we are off

the graph, but it appears our guess for q is low. Assuming the trend of the graph

continues, we'll choose q = 0.91 and iterate the problem with the new values of kb and q.

Intermediate results are Se = 36.5 kpsi, Sf = 39.6 kpsi, and Kf = 1.59. This gives



3 rev

39.

1.

1.59 203.

d = 2.36 in Ans.

/

f f f

S

n K d

 

a

A quick check of kb and q show that our estimates are still reasonable for this diameter.


6-20 SS Seyu  40 kpsi, 60 kpsi, tm a m80 kpsi,  15 kpsi, 25 kpsi,  0

Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.

 

 

1/ 2 2 1/ 2 22 2

1/ 2 2 1/ 2 22 2

3 25 3 0 25.00 kpsi

3 0 3 15 25.98 kpsi

aaa

mmm





   



  







1/ 2 22 1/ 2 22 max max max

1/ 2 22

33

25 3 15 36.06 kpsi

  am am

   

 

 



max

60

1..

36.

y y

S

nA 

 

ns

(a) Modified Goodman, Table 6-

1

1..

(25.00 / 40) (25.98 / 80)

nAf 

ns

(b) Gerber, Table 6-

2 2 1 80 25.00 2(25.98)(40) 1 1 1.. 2 25.98 40 80(25.00)

nAf



 



 





ns



 

1/ 2 22 1/ 2 22 max max max

22 1/ 2

33

12 0 3 10 15 44.93 kpsi

  am am

   

 

 



max

60

1..

44.

y y

S

nA 

 

ns

(a) Modified Goodman, Table 6-

1

1..

(21.07 / 40) (25.98 / 80)

nAf 

ns

(b) Gerber, Table 6-

2 2 1 80 21.07 2(25.98)(40) 1 1 1.. 2 25.98 40 80(21.07)

nAf

 







 

ns

(c) ASME-Elliptic, Table 6-

22

1

1..

(21.07 / 40) (25.98 / 60)

nAf 

ns

a

__

6-23 SS Seyu  40 kpsi, 60 kpsi, ta m80 kpsi,  30 kpsi, a 0

Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.

 



1/ 2 2 1/ 2 22 2

22 1/ 2

3 0 3 30 51.96 kpsi

3 0 kpsi

aaa

mmm





 



 





1/ 2 22 1/ 2 22 max max max

2 1/ 2

33

3 30 51.96 kpsi

  am am

   

 





max

60

1..

51.

y y

S

nA 

 

ns

(a) Modified Goodman, Table 6-

1

0..

(51.96 / 40)

nAfns

(b) Gerber criterion of Table 6-7 is only valid for m > 0; therefore use Eq. (6-47).

40

10

51.

ae ff ea

S

nn S

.77Ans.

  

(c) ASME-Elliptic, Table 6-

2

1

0..

(51.96 / 40)

nAfns

Since infinite life is not predicted, estimate a life from the S-N diagram. Since 'm = 0,

the stress state is completely reversed and the S-N diagram is applicable for 'a.

Fig. 6-18: f = 0.

Eq. (6-14):

 

2 2 ()0.875(80) 122. 40

ut

e

fS a S

 

Eq. (6-15):

1 1 0.875(80)

log log 0. 3340

ut

e

fS b S

 

  

 

Eq. (6-16):

1 1/ 0. rev 51. 39 600 cycles. 122.

b

NA a

 





ns

a

__

6-24 SS Seyu  40 kpsi, 60 kpsi, ta mm80 kpsi,  15 kpsi, 15 kpsi,  0

Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.

 

1/ 2 2 1/ 2 22 2 aaa  3  0 3 15 25.98 kpsi 

 

1/ 2 2 1/ 2 22 2 mmm     3  15 3 0 15.00 kpsi 



 

1/ 2 22 1/ 2 22 max max max

22 1/ 2

33

15 3 15 30.00 kpsi

  am am

   

 

 



max

60

2..

30

y y

S

nA 



ns

(a) Modified Goodman, Table 6-

1

1..

(25.98 / 40) (15.00 / 80)

nAf  

ns

(b) Gerber, Table 6-

2 2 1 80 25.98 2(15.00)(40) 1 1 1.. 2 15.00 40 80(25.98)

nAf

 







 

ns

Eq. (6-14):

 

2 2 ()0.87(590) 1263 208.

ut

e

fS a S

 

Eq. (6-15):

1 1 0.87(590)

log log 0. 3 3 208.

ut

e

fS b S

 

  

 

Eq. (6-16):

1/ 1 rev 324.2 0. 33 812 cycles 1263

b

N a

 

 



N = 34 000 cycles Ans.


6-26 SSFFut 590 MPa, y 490 MPa, max 28 kN, min 12 kN

Check for yielding

max 2 max

28 000

147.4 N/mm 147.4 MPa 10(25 6)

F

A

   

max

490

3..

147.

y y

S

nA 

  ns

Determine the fatigue factor of safety based on infinite life.

From Prob. 6-25: SKef208.6 MPa, 2.

max min 28 000 12 000 2.2 92.63 MPa 2 2(10)(25 6)

af

FF

K

A

 

 

max min 28 000 12 000 2.2 231.6 MPa 2 2(10)(25 6)

mf

FF

K

A

 





Modified Goodman criteria:

1 92.63 231.

208.6 590

am

nSSfeut

 

 

nAf 1.20 ns.

Gerber criteria:

22 1 2 11 2

ut a m e f me uta

SS

n SS





 

  

 

  

 

  

 

2 2 1 590 92.63 2(231.6)(208.6) 11 2 231.6 208.6 590(92.63)

 

 

 

 

  

 

nAf1.49 ns.

ASME-Elliptic criteria:

22 2

11

( / ) ( / ) (92.63 / 208.6) (231.6 / 490)

f ae m y

n SS





2

= 1.54 Ans.

The results are consistent with Fig. 6-27, where for a mean stress that is about half of the

yield strength, the Modified Goodman line should predict failure significantly before the other two.


6-27 SSut590 MPa, y 490 MPa

(a) FFmax28 kN, min 0 kN

Check for yielding

max 2 max

28 000

147.4 N/mm 147.4 MPa 10(25 6)

F

A

   

max

490

3..

147.

y y

S

nA 

  ns

From Prob. 6-25: SKef208.6 MPa, 2.

max min

max min

28 000 0

2.2 162.1 MPa 2 2(10)(25 6)

28 000 0

2.2 162.1 MPa 2 2(10)(25 6)

af

mf

FF

K

A

FF

K

A

 

 

 

 



1 162.1 162.

208.6 590

am

nSSfeut

 

 

nAf0.95 ns.

Since infinite life is not predicted, estimate a life from the S-N diagram. First, find an

equivalent completely reversed stress (See Ex. 6-12).

rev

162.

223.5 MPa 1 ( / ) 1 (162.1 / 590)

a

mutS

 



Fig. 6-18: f = 0.

Eq. (6-14):

 

2 2 ()0.87(590) 1263 208.

ut

e

fS a S

 

Shigkeys 11th Ed Ch 3 Solutions

Source: https://www.studocu.com/row/document/aljamaa%D8%A9-altknolojy%D8%A9-iraq/shigleys-solution-chapter-6/tutorial-work/chapter-6-solutions-solution-ofshigleys-mechanical-engineering-design/8681591/view